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LETTER TO THE EDITOR

Nonlinear dynamics from the Wilson Lagrangian

Oliver Knill†
Division of Physics, Mathematics and Astronomy, Caltech, 91125 Pasadena, CA, USA

Received 9 September 1996

Abstract. A nonlinear Hamiltonian dynamics is derived from the Wilson action in lattice gauge
theory. LetD be a linear space of lattice Dirac operatorsD(a) defined by some lattice gauge
field a. We consider the LagrangianD 7→ tr((D(a) + im)4) on D, wherem ∈ C is a mass
parameter. Critical points of this functional are given by solutions of a nonlinear discrete wave
equation which describe the time evolution of the gauge fieldsa. In the simplest case, the
dynamical system is a cubic Henon map. In general, it is a symplectic coupled map lattice. We
prove the existence of non-trivial critical points in two examples.

1. The problem

Let X be an operator algebra with finite trace tr. We introduce the problem of finding
critical points of the functional

Lm : D 7→ tr((D + im)4) (1)

on some linear subspaceD of X , wherem is a complex mass parameter. IfD is formed
by discrete Dirac operatorsD = ∑

j aj τj + (aj τj )
∗, where theai are in a subalgebra

A ⊂ X and τj are automorphisms inA, this functional is an averaged Wilson action of
the lattice gauge fieldaj . We demonstrate here that critical points ofLm define a nonlinear
dynamical system and look at examples. In the simplest case, if all theaj are invariant
under space translations, the time evolution is given by a cubic Henon twist map in the
plane. In general, the dynamics is an infinite dimensional nonlinear discrete reversible wave
equation. These discrete partial difference equations are generalizations of classical coupled
map lattices [13, 10, 5]. Hamiltonian reversible coupled map lattices appeared in [12, 15].
Non-invertible coupled map lattices in connection with field theory were treated in [3].
Here, we have a both space and time-discrete wave equation, time is physical time and we
work in an ergodic set-up.

2. The motivation

Non-relativistic quantum dynamics deals with the Schrödinger dynamical system i¯hψ̇ = Lψ

in a Hilbert spaceH. If L is a bounded operator, the discrete time version

i
h̄

2ε
[ψ(t + ε)− ψ(t − ε)] = Lψ(t) (2)

defines a unitary evolution and is useful for studying spectral measures ofL ([19]). If the
left-hand side of equation (2) is ia−1(U−U ∗) andV = iU , then equation (2) isV+V ∗ = aL
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a discretization of a relativistic wave equation. Using the discrete operatorK = V+V ∗−aL
on spacetime, the evolution (2) is equivalent toKψ = 0, so that a waveψ is a critical point
of the formal functionalψ 7→ (ψ,Kψ). In quantum field theory, the wavesψ become
operators and contribute to the Hamiltonian. We assume that both the waveψ = D and
the HamiltonianK = D2 −m2 are in anC∗ algebraX with finite trace tr.X is a not yet
completed normed space with scalar product(A,B) = tr(A,B). We replace the functional
ψ 7→ (ψ,Kψ) leading to a linear unitary quantum evolution (2) by the smooth bounded
functionalD 7→ (D, (D2 − m2)D) = Lm − m4. It gives a nonlinear evolution onD and
on its completion, the Hilbert space(H, (·, ·)). While the functional (1) has onX only
the trivial critical pointsD = −im, it becomes interesting when restricted to a linear space
D = {D = ∑d

j=1 aj τj + (aj τj )
∗, aj ∈ A} ⊂ X , whereτj are fixed unitary elements inX

defining automorphisms inA andD by a 7→ τjaτ
∗
j andD 7→ D(Tj ) = τjDτ

∗
j , respectively.

EveryD ∈ D defines a real-valued lattice gauge field on the Cayley graph of the groupZ
generated by the unitariesτj . At the bond connectingD with D(Tj ) is attached the field
aj . The value ofLm is a sum over all parallel transports of closed paths of length 4. If the
gauge fieldsaj are unitary and� is finite thenLm is up to a linear transformation exactly
the Wilson action. In [17] we considered the variational problem

D 7→ Det(D +m) = exp(tr(log |(D +m)|)) (3)

which is not smooth in infinite dimensions. Minimizers of (3) exist for allm ∈ C in a
statistical mechanical set-up, whereD is defined by a translation-invariant measure on the
set of unitary gauge field configurations. The functional (3) defines no dynamics. tr(D2)

gives no interesting evolution. The expansionm−1 Det(D + m) = 1 − tr(D2)m−2/2 +
(tr(D2)2−2 tr(D4))m−4/8+O(m−6)makes (1) the simplest substitute for the determinant (3).
Higher-order polynomial actions do not lead to wave equations: critical points would lead
to unphysical higher-order PDEs and so violate the primitive causality axiom [11]. Another
motivation is of course that the Wilson action is the Hamiltonian in lattice gauge theory. It is
fundamental because it becomes in the continuum limit the Maxwell–Yang–Mills functional.
A more general problem which we do not address in this letter is to allowD to be a manifold
in X like for exampleD = {D = ∑

j aj τj +(aj τj )∗, a−1
j = a∗

j ∈ A} leading to a variational
problem with constraints.

3. The functional

Let R be any group acting as automorphisms on a probability space(�, ν). Let Z be a
discrete subgroup ofR with generatorsTk : � → � and automorphismsτk : a 7→ a(Tk) on
A = L∞(�, ν). Let X be the crossed product ofA with theZ action. We call the elements
D = ∑

k akτk + (akτk)
∗ ∈ X discrete Dirac operators. In the discrete case, matrix-valued

coefficientsγkak with Dirac matricesγk are not necessary because the Clifford relations
can be achieved on a doubled lattice, which leads for dim= 4 to operators on spinors with
16 components. LetD be a linear space of such operators. We look at the problem of
finding critical points of the action (1) onD, wherem ∈ C is a parameter. The choice
R = P×G, whereP is the Poincaŕe group and whereG is a product of compact Lie groups,
is physically motivated.Z ⊂ R is the product of a discrete latticeZ4 in the translation
group generated byτ0, . . . , τ3 of P and a countable group inG generated byσj . Every
D = ∑

l alτl+(alτl)∗ = ∑3
j=0 aj τj +(aj τj )∗ +∑

k bkσk+(bkσk)∗, is the sum of a kinematic
part and a part responsible for internal degrees of freedom. Ifaj and bk commute with
involutionsσk, we writeD = ∑

j aj τj + (aj τj )
∗ + ∑

k 2bkσk.
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1. Critical points. Let π be the projection fromX to D defined by(·, ·). A functional
D 7→ Lf (D) = tr(f (D)) onD has the Fŕechet derivativedL(D)(U) = tr(Uπf ′(D)) and so
the functional derivativeδLf = πf ′(D). In particular, the Euler equations of the functional
Lm = tr((D + im)4) areπ(D + im)3 = 0. Explicitly,

0 = −3m2ak + ak

(∑
j 6=k

a2
j (Tk)+ a2

j (TkT
−1
j

)
+ a2

j + a2
j (T

−1
j ))

+ak(a2
k (Tk)+ ak(T

−1
k )2 + a2

k )

+
∑
j 6=k

ak(Tj )ajaj (Tk)+ ak(T
−1
j )aj (T

−1
j )aj (T

−1
j Tk).

Let D0 = {D ∈ D | D(T0) = D}. Becauseak(T0) andal(T0) do not occur simultaneously
in one equation fork 6= l, k 6= 0, l 6= 0, one can solve forak(T0) and then fora0(T0).
This gives a symplectic mapS on D0 × D0. We will write it down only in the examples.
Given anS-invariant measureµ on D0 × D0, which is Ti-invariant for i > 1. Define
a new probability space� = D0 × D0 andD((ω1, ω2)) = ω1. � carries an additional
actionS replacingT0 and commuting withTj . Denoting again byX the crossed product of
A = L∞(�,µ) with this newZ action and byD the corresponding subspace, thenD is a
critical point of Lm. Having in mind the Wightman axioms [9], we chooseµ ergodic. The
space- and time-invariant fieldD is then essentially unique.

2. The Hessian. The map D 7→ πDn on D has the linearizationU 7→
π

∑n−1
k=0D

kUDn−1−k. The Hessianδ2L(D) at a critical pointD is therefore the linear
map onD

U 7→ LU = π [(D + im)U(D + im)+ U(D + im)2 + (D + im)2U ].

For U = ukτk + ukτ
∗
k ∈ D, we obtainLU = vkτk + (vkτk)

∗ with

vk = −3m2uk +
∑
j 6=k
(a2
j + a2

j (TkT
−1
j )+ a2

j (Tk)+ a2
j (T

−1
j ))uk

+(a2
k (Tk)+ a2

k (T
−1
k )+ 3a2

k )uk

+
∑
j

ajaj (Tk)uk(Tj )+ aj (T
−1
j )aj (TkT

−1
j )uk(T

−1
j ).

If L is invertible, the critical point is structurably stable with respect to changes inm.
This fact can be useful for constructing critical points perturbatively, as we will see in an
example.

3. Gauge invariance. Forg ∈ A, define the gauge transformationD 7→ gDg−1 on D. The
lattice gauge fielda defined byD transforms likeak 7→ gakg(T

−1
k )−1. The trace property

tr(gf (D)g−1) = tr(f (D)) implies thatLm is gauge invariant. In particular, ifD is a critical
point, thengDg−1 is a critical point too. Gauge transformations are unitary with respect to
the scalar product tr(·, ·) on D.
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4. Fields. Each operatorD defines a lattice gauge field or discrete 1-forma = ∑
j aj τj . If

Z is Abelian, define the fieldF = da = ∑
i<jFij τiτj , whereFij = a−1

j ai(Tj )
−1aj (Ti)ai is

the result of the parallel transport around theij plaquette. The fieldF is gauge invariant.
Since theai are in an Abelian algebraA, the 3-formdF satisfies

dFijk = FijFij (Tk)
−1FjkFjk(Ti)

−1FkiFki(Tj )
−1 = 1

where 1 is the zero element in the gauge group. The Maxwell equationdF = 1 is a special
case of the general factd ◦ d = 0 in ergodic group cohomology [7, 18].

5. Extension of the functional.Let R have the discrete topology and letY be the crossed
product ofA = L∞(�) with the R action. Fore = (e1, e2, . . . , ) with ei ∈ R andai ∈ A,
considerDe = {D = ∑

j aj τej + (aj τej )
∗} ⊂ Y. The groupR acts on

⋃
e De by

D(a, e) 7→ Dr(a, e) = D(a(T r), rer−1).

All Dr, r ∈ R have the same density of states andLm is invariant under theR action
on

⋃
e De. Because tr(D(1)D(2)) = tr(D(1)

r D
(2)
r ), the R action onD defines a unitary

representation ofR on the completionH of the pre-Hilbert space(
⋃
i De, tr(·, ·)). If R is

the Poincaŕe groupP, thenD(a, e) 7→ Dr(a, e) = D(a(T r), P−re), whereT r = P r + pr

is the decomposition into Lorentz transformation and translation.

6. Discrete spacetime and continuous symmetry.The functionalLm is R-invariant in the
algebraY of all possible discrete operators. We presently do not consider variations inY
and fix the lattice. We can allow variations of the vectore defining the discrete subgroup
Z if R acts by diffeomorphisms on a manifoldM. The general variational problem inY
is Lorentz invariant. For discrete time quantum mechanics see [22]. Discreteness emerges
naturally in the ergodic theory ofR actions [6].

4. Examples

1. A one-dimensional example.Let T = T0, T1 : � → � be commuting measure-
preserving transformations. ConsiderD = {D = τ + τ ∗ + bσ | b = b(T1) ∈ L∞(�)}.
The variational problem (1) isLm : D 7→ tr((D + im)4) = tr(D4) − 6m2 tr(D2) + m4 and
has the critical pointsD3 − 3m2D = 0. Finding a bounded measureable mapb satisfying
the Euler equationsb(T0)+ b(T −1

0 )+ 4b− 3m2b+ b3 = 0 is equivalent to find an invariant
measurem of the cubic Henon map

S :

(
x

y

)
7→

(
(−(4 − 3m2)x − x3 − y

x

)
(4)

where x = b, y = b(T −1
0 ): the solutionb is the first coordinate of the factor map

� → R2 conjugating(�, T , ν) with (R2, S, µ) [16]. Another generating function forS is
− 1

2(b(T0)−b)2 +V (b) with V (b) = 1
4b

4 + 1
2(4−3m2)b2. Such mapsS are in general non-

integrable [20] and the non-wandering set is compact [8]. Critical points can be constructed
(i) using results in smooth ergodic theory or (ii) by KAM perturbation theory: (i) if there
is a periodic orbit of odd periodp > 1, then the topological entropyhtop(S) is positive [4].
Moreover,htop(S) takes the maximal value log(3) if |4−3m2| > 3g2/3 due to an embedded
horseshoe. [8].htop(S) > 0 implies the existence of a compact invariant hyperbolic invariant
set [14]. (ii) If |4−3m2| < 2, then 0 is a linearly stable fixed point. It is stable for the generic
set ofm’s with non-trivial Birkhoff normal form [21]. This assures the existence of invariant
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measures even absolutely continuous with respect to Lebesgue measure. The Hessian is the
bounded random operator onl2(Z) δ2Lm(D) : u 7→ un+1 + un−1 − 2un + V ′′(xn)un, where
xn = b(T n) is obtained from the functionb defining the critical pointD.

2. A higher-dimensional example.Given D = {D = τ + τ ∗ + α
∑d
j=1(τj + τ ∗

j )+ bσ }. A
critical point of Lm satisfies the Euler equations

b(T0)+ b(T −1
0 )+ (4 − 3m2)b + α21b + 4dα2b + b3 = 0 (5)

where1b = ∑d
j=1 b(Tj ) + b(T −1

j ). Writing x = b, y = b(T −1
0 ), we obtain the discrete

Hamiltonian system

S :

(
x

y

)
7→

(
(−α2(1+ 4d)x − (4 − 3m2)x − x3 − y

x

)
(6)

where S defines an invertiblecoupled map lattice. Invertible coupled map lattices of
similar type have been considered in [12]. Forα = 0, S is an array decoupled cubic
Cremona maps. They are, forα > 0, linked through a linear nearest-neighbour coupling.
Equation (6) is a discrete version of the nonlinearφ4 wave equation(� + m2)φ = p(φ),
where� = ∂2

t −1 andp is a cubic polynomial. If� is a finite set,S is a symplectic map
(x, y) 7→ (f (x)−y, x) on R2|�|. The linearization ofS is conjugated to a decoupled system
of two unitary Schr̈odinger evolutions ifm is choosen so that the Hessian is not invertible.
While the nonlinear Schrödinger equation is integrable by an infinite dimensional Siegel
theorem [23], the nonlinearφ4 wave analogue is not. An analogue fact holds here in the
special case of functions which are constant in space: while a polynomial mapx 7→ f (x)

can be integrable near 0 by Siegel’s theorem, the symplectic map(x, y) 7→ (f (x)−y, x) is
non-integrable and only a deeper KAM argument can establish stability of an elliptic fixed
point. In higher dimensions, a linearly stable fixed point 0 is in general unstable. We now
prove for largem that there are aperiodic non-trivial solutions of the dynamical system (6)
using an argument of Aubry [1, 2, 12, 16, 15]. Equation (5) is equivalent toF(ε, q) = 0,
whereq = b/m, ε = m−3 and

F(ε, q) = ε[q(T0)+ q(T −1
0 )+ α21q + (4dα2 + 4)q] − 3q + q3.

For ε = 0, solve−3q + q3 = 0 by any functionq : � → R taking values in{±√
3}.

The linear map(∂/∂q)F (0, q) onL∞(�) is invertible. The implicit function theorem gives
solutionsq for small ε = m−2. This argument generalizes to find the critical points for
largem for

D =
{
D = τ + τ ∗ +

d∑
j=1

α(τj + τ ∗
j )+

n∑
j=1

bjσj

}
where the critical points satisfy

bi(T0)+ bi(T
−1

0 )+ (4 − 3m2)bi + α21b + b3
i + 3bi

∑
k 6=i

b2
k = 0.

The corresponding symplectic mapS has also the generating function∑
j

(
(bj (T0)− bj )

2

2
+ α2

∑
k

(bj (Tk)− bj )
2

2
+ (2α2 + 6 − 3m2)

b2
j

2
+ b4

j

4
+ 3

2

∑
k

b2
j b

2
k

)
.
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