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LETTER TO THE EDITOR

Nonlinear dynamics from the Wilson Lagrangian

Oliver Knill
Division of Physics, Mathematics and Astronomy, Caltech, 91125 Pasadena, CA, USA

Received 9 September 1996

Abstract. A nonlinear Hamiltonian dynamics is derived from the Wilson action in lattice gauge
theory. LetD be a linear space of lattice Dirac operat@réa) defined by some lattice gauge
field a. We consider the LagrangiaP +— tr((D(a) + im)* on D, wherem € C is a mass
parameter. Critical points of this functional are given by solutions of a nonlinear discrete wave
equation which describe the time evolution of the gauge fieldsn the simplest case, the
dynamical system is a cubic Henon map. In general, it is a symplectic coupled map lattice. We
prove the existence of non-trivial critical points in two examples.

1. The problem

Let X be an operator algebra with finite trace tr. We introduce the problem of finding
critical points of the functional

L i D> tr((D +im)%) 1)

on some linear subspade of X', wherem is a complex mass parameter. 7 is formed

by discrete Dirac operator® = > .a;7; + (a;7;)*, Where theq; are in a subalgebra

A C X andt; are automorphisms itd, this functional is an averaged Wilson action of

the lattice gauge field;. We demonstrate here that critical points&f define a nonlinear
dynamical system and look at examples. In the simplest case, if ali;tlaee invariant

under space translations, the time evolution is given by a cubic Henon twist map in the
plane. In general, the dynamics is an infinite dimensional nonlinear discrete reversible wave
equation. These discrete partial difference equations are generalizations of classical coupled
map lattices [13, 10, 5]. Hamiltonian reversible coupled map lattices appeared in [12, 15].
Non-invertible coupled map lattices in connection with field theory were treated in [3].
Here, we have a both space and time-discrete wave equation, time is physical time and we
work in an ergodic set-up.

2. The motivation

Non-relativistic quantum dynamics deals with the Schinger dynamical systemi = L/
in a Hilbert spacéH. If L is a bounded operator, the discrete time version

R
Iz[w(we) — Yt —e)] =Ly )

defines a unitary evolution and is useful for studying spectral measureq[dP]). If the
left-hand side of equation (2) isT2(U—U*) andV = iU, then equation (2) i¥ +V* = aL
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a discretization of a relativistic wave equation. Using the discrete opekaterV +V*—alL

on spacetime, the evolution (2) is equivalentkigr = 0, so that a wavey is a critical point

of the formal functionaky +— (y, Kv). In quantum field theory, the waves become
operators and contribute to the Hamiltonian. We assume that both the WwaveD and

the Hamiltoniank = D? — m? are in anC* algebraX’ with finite trace tr. X' is a not yet
completed normed space with scalar productt B) = tr(A, B). We replace the functional

¥ — (Y, K¢¥) leading to a linear unitary quantum evolution (2) by the smooth bounded
functional D — (D, (D? — m?)D) = L,, —m*. It gives a nonlinear evolution o and

on its completion, the Hilbert spadé, (-, -)). While the functional (1) has o’ only

the trivial critical pointsD = —im, it becomes interesting when restricted to a linear space
D={D = Zj‘.l:lajrj + (aj7)*,a; € A} C X, wherer; are fixed unitary elements iA’
defining automorphisms il andD by a Tjat] andD — D(T;) = 7 DT/, respectively.
Every D € D defines a real-valued lattice gauge field on the Cayley graph of the gfoup
generated by the unitaries. At the bond connectingd with D(T;) is attached the field

aj. The value ofZ,, is a sum over all parallel transports of closed paths of length 4. If the
gauge fieldsz; are unitary and? is finite thenZ,, is up to a linear transformation exactly
the Wilson action. In [17] we considered the variational problem

D — Det(D + m) = exptr(log|(D + m)|)) )

which is not smooth in infinite dimensions. Minimizers of (3) exist foralle C in a
statistical mechanical set-up, whefeis defined by a translation-invariant measure on the
set of unitary gauge field configurations. The functional (3) defines no dynami@3?) tr
gives no interesting evolution. The expansian®Det(D + m) = 1 — tr(D®)m~2/2 +
(tr(D?)%2-21tr(D*)m~*/8+0(m~®) makes (1) the simplest substitute for the determinant (3).
Higher-order polynomial actions do not lead to wave equations: critical points would lead
to unphysical higher-order PDEs and so violate the primitive causality axiom [11]. Another
motivation is of course that the Wilson action is the Hamiltonian in lattice gauge theory. Itis
fundamental because it becomes in the continuum limit the Maxwell-Yang—Mills functional.
A more general problem which we do not address in this letter is to dllderbe a manifold

in X like for exampleD = {D = } . a;7; +(a;7))", aj*l = a; € A} leading to a variational
problem with constraints.

3. The functional

Let R be any group acting as automorphisms on a probability space). Let Z be a
discrete subgroup dR with generatord; : @ — Q and automorphismsg, : a — a(T;) on

A = L*(2,v). Let X be the crossed product gf with the Z action. We call the elements

D =), at + (ax)* € X discrete Dirac operators. In the discrete case, matrix-valued
coefficientsy,a, with Dirac matricesy, are not necessary because the Clifford relations
can be achieved on a doubled lattice, which leads fordihto operators on spinors with
16 components. LeD be a linear space of such operators. We look at the problem of
finding critical points of the action (1) o®, wherem € C is a parameter. The choice
R = P x G, whereP is the Poinca group and wher§ is a product of compact Lie groups,

is physically motivated.Z C R is the product of a discrete lattic&* in the translation
group generated byo, ..., 73 of P and a countable group ii generated by;. Every
D=%,aqu+(@n)" = Zf:o a; i+ (a;t)* + Y, bror + (broy)*, is the sum of a kinematic
part and a part responsible for internal degrees of freedomy; énd b, commute with
involutionsoy, we write D = >, a;7; + (a;7))* + }_; 2bioy.
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1. Critical points. Let = be the projection fromY to D defined by(:,-). A functional

D — L;(D) =tr(f(D)) onD has the Fechet derivativelL(D)(U) = tr(Ux f'(D)) and so
the functional derivativé £, = 7 f’(D). In particular, the Euler equations of the functional
L, =tr((D + im)*) arem (D + im)3 = 0. Explicitly,

0= —3m2a; + a; (Z a?(Ty) + a(Ty T,-‘l> +al +a(T7)
J#k

Har(@2(T) + a (T, H? + ad)

+ ) a(Taja;(To) + an(T; Ha; (T Ha; (7).
J#k

Let Do = {D € D | D(To) = D}. Becausey (Tp) anda;(Tp) do not occur simultaneously
in one equation fok £ [,k # 0,1 # 0, one can solve fou,(Tp) and then forag(Tp).
This gives a symplectic mag on Dy x Dg. We will write it down only in the examples.
Given an S-invariant measurer on Dy x Do, which is T;-invariant fori > 1. Define
a new probability spac& = Dy x Dy and D((w1, w2)) = wy. Q carries an additional
action S replacingZy and commuting with7;. Denoting again byt’ the crossed product of
A = L*°(2, n) with this new Z action and byD the corresponding subspace, theris a
critical point of £,,. Having in mind the Wightman axioms [9], we chogseergodic. The
space- and time-invariant field is then essentially unique.

2.  The Hessian. The map D +— #D" on D has the linearizationU
nzz;é D*¥UD" %, The Hessiams2£(D) at a critical pointD is therefore the linear
map onD

U LU = 7[(D +im)U(D + im) + U(D + im)? + (D + im)?U].
ForU = u;t, + ukr,;" € D, we obtainLU = vt + (veti)™* with

e = —3mPug + Y _(a? + (1Y) + a2(T) + aX (T )y
J#k

+(@Z(Ty) + a2(T;7Y) + 3aP)uy

+ > ajaj(Tow(Ty) + a; (T, Ha; (T T (17,
J

If L is invertible, the critical point is structurably stable with respect to changes.in
This fact can be useful for constructing critical points perturbatively, as we will see in an
example.

3. Gauge invariance. For g € A, define the gauge transformatién— gDg~* onD. The
lattice gauge field: defined byD transforms likea; +— gakg(Tk_l)’l. The trace property
tr(gf(D)g~ 1) = tr(f(D)) implies thatZ,, is gauge invariant. In particular, i is a critical
point, theng Dg~! is a critical point too. Gauge transformations are unitary with respect to
the scalar product tr, -) on D.
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4. Fields. Each operatoD defines a lattice gauge field or discrete 1-farme  a;7;. If
Z is Abelian, define the field = da = Zi<jﬂjrirj, whereF;; = a_;la,»(Tj)*laj(T,-)a,- is
the result of the parallel transport around thieplaquette. The fieldr is gauge invariant.
Since theg; are in an Abelian algebral, the 3-formd F satisfies

dF;j = FjFj(T) Fi F(T) Y Fu Fu (T ™t = 1

where 1 is the zero element in the gauge group. The Maxwell equétios 1 is a special
case of the general fadto d = 0 in ergodic group cohomology [7, 18].

5. Extension of the functional.Let R have the discrete topology and [Etbe the crossed
product of A = L*°(2) with the R action. Fore = (e, e5, ...,) with ¢; € R anda; € A,
considerD, = {D = Z_i a;t, + (a;z.,)*} C Y. The groupR acts on( J, D, by

D(a, e) — D,(a,e) = D@a(T"), rer ).

All D.,r € R have the same density of states afigl is invariant under theR action
on |J,D.. Because tDPD®@) = tr(DY D), the R action onD defines a unitary
representation oR on the completior#{ of the pre-Hilbert spacé€ J; D., tr(-, -)). If R is
the Poincak groupP, thenD(a, e) — D,(a,e) = D(a(T"), P~"e), whereT" = P" 4 p"
is the decomposition into Lorentz transformation and translation.

6. Discrete spacetime and continuous symmetihe functional’l,, is R-invariant in the
algebra)’ of all possible discrete operators. We presently do not consider variatig¥is in

and fix the lattice. We can allow variations of the vectodefining the discrete subgroup

Z if R acts by diffeomorphisms on a manifod. The general variational problem }

is Lorentz invariant. For discrete time quantum mechanics see [22]. Discreteness emerges
naturally in the ergodic theory dR actions [6].

4. Examples

1. A one-dimensional exampleLet T = Ty, 71 : Q@ — Q be commuting measure-
preserving transformations. ConsidBr= {D = 1 + t* + bo | b = b(Ty) € L*®(Q)}.
The variational problem (1) i£,, : D — tr((D + im)*) = tr(D*) — 6m?tr(D?) + m* and
has the critical point®® — 3m?D = 0. Finding a bounded measureable ntagatisfying
the Euler equations(Ty) +b(T0‘l) +4b — 3m?b + b® = 0 is equivalent to find an invariant
measuren of the cubic Henon map

S:<x>l_)<(—(4—3m2)x—x3—y> @
y x

wherex = b,y = b(TO‘l): the solutionb is the first coordinate of the factor map

Q — R? conjugating(2, T, v) with (R?, S, u) [16]. Another generating function fof is
—2(b(To) — b)?+ V (b) with V(b) = ;b*+ 1(4—3m?)b?. Such maps are in general non-
integrable [20] and the non-wandering set is compact [8]. Critical points can be constructed
(i) using results in smooth ergodic theory or (ii) by KAM perturbation theory: (i) if there

is a periodic orbit of odd periogh > 1, then the topological entropyo,(S) is positive [4].
Moreover,hip(S) takes the maximal value 168) if |4 —3m?| > 3g%2 due to an embedded
horseshoe. [8]hp(S) > 0 implies the existence of a compact invariant hyperbolic invariant
set [14]. (i) If |4—3m?| < 2, then O is a linearly stable fixed point. It is stable for the generic
set ofm’s with non-trivial Birkhoff normal form [21]. This assures the existence of invariant
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measures even absolutely continuous with respect to Lebesgue measure. The Hessian is the
bounded random operator ¢N(Z) 82L,,(D) : u > upi1 + tty_1 — 2u, + V" (x,)u,, where
x, = b(T") is obtained from the functioh defining the critical pointD.

2. A higher-dimensional exampleGivenD = {D =1+ 1t* 4+« Zle(rj + 1) +bo}. A
critical point of £,, satisfies the Euler equations

b(To) + b(Ty™) + (4 — 3m?)b + «®Ab + 4da®h + b> = 0 (5)

where Ab = Zj’zlb(Tj) + b(T;1). Writing x = b,y = b(T; "), we obtain the discrete
Hamiltonian system

(x) ((—aZ(A+4d)x—(4—3m2)x—x3—y)
S >
y X

where S defines an invertiblecoupled map lattice Invertible coupled map lattices of
similar type have been considered in [12]. For= 0, S is an array decoupled cubic
Cremona maps. They are, far> 0, linked through a linear nearest-neighbour coupling.
Equation (6) is a discrete version of the nonlingdrwave equationd + m?)¢ = p(¢),
where[] = 32 — A and p is a cubic polynomial. If2 is a finite set,S is a symplectic map
(x,y) = (f(x)—y,x) onR?% The linearization of is conjugated to a decoupled system

of two unitary Schodinger evolutions iin is choosen so that the Hessian is not invertible.
While the nonlinear Sclidinger equation is integrable by an infinite dimensional Siegel
theorem [23], the nonlineap* wave analogue is not. An analogue fact holds here in the
special case of functions which are constant in space: while a polynomiakmapf (x)

can be integrable near 0 by Siegel's theorem, the symplecticimap — (f(x) —y, x) is
non-integrable and only a deeper KAM argument can establish stability of an elliptic fixed
point. In higher dimensions, a linearly stable fixed point O is in general unstable. We now
prove for largem that there are aperiodic non-trivial solutions of the dynamical system (6)
using an argument of Aubry [1, 2, 12, 16, 15]. Equation (5) is equivalem(tqg ¢) = 0,
whereq = b/m,e =m=3 and

(6)

F(e,q) = €lq(To) + q(Ty 1) + «?Aq + (4da® + 4)q] — 3q + ¢°.

For e = 0, solve—3g + ¢ = 0 by any functiong : @ — R taking values in{#+/3}.
The linear mapgd/dq) F (0, g) on L*°(2) is invertible. The implicit function theorem gives
solutionsg for smalle = m~2. This argument generalizes to find the critical points for
largem for

d
D= {D:r—i—r*—i—Za(fj—i-Tj*)-i-
s ;

n
bjo;
J =1

where the critical points satisfy

bi(To) + bi(Ty ) + (4 — 3m®)b; + a?Ab + b2 + 3b; Z b? = 0.
ki

The corresponding symplectic maphas also the generating function

(b(To) = b))* (b (T)) = b))? B2 bt 3
Z(W”Z;]z’+<2“2+6—3m2>21+4+2;b?b,3 |
J
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